
Joint Analysis of Longitudinal and Recurrent Event Outcomes

Elizabeth H. Slate

Dept. of Biostatistics, Bioinformatics, and Epidemiology
Medical University of South Carolina

Charleston, SC 29425 USA
slateeh@musc.edu

Edsel A. Peña

Department of Statistics
University of South Carolina
Columbia, SC 29208 USA

pena@stat.sc.edu

Abstract

We consider modeling the joint outcomes of a recurrent event process and an associated longitu-
dinal biomarker. Example studies where such data may arise include those monitoring repeated
heart attacks and related markers such as cholesterol levels or inflammation measures, or studies
assessing association between markers for diabetes control and recurrent oral complications. In
this talk, we describe a latent class model in which the event process and longitudinal outcome
are conditionally independent given the latent class. The model for the recurrent event accom-
modates the effect of accumulating event occurrences on the subject, as well as the effects of
interventions performed after each event occurrence. We discuss inference for this joint model
and illustrate behavior under varying simulation scenarios and by application to biomedical data.

1 Introduction

In a wide variety of settings, the event of major interest is recurrent. Common examples of such events
in the biomedical setting are epileptic seizures, occurrence of tumors, and hospitalization due to a chronic
disease. In engineering and reliability settings, recurrent events are the failure of a computer software, a
nuclear power plant meltdown, or the failure of a major subsystem of a spacecraft. In actuarial situations,
automobile and non-life insurance claims are recurrent events, while personnel absenteeism and criminal
offenses are recurring events with a sociological flavor. A drop of 15% of the Dow Jones industrial average
during a trading day is a recurrent event with economic connotations, and international conflicts or formal
accords could be recurrent events in the political arena.

In many of these situations, there is a longitudinal variable associated with the event occurrence rate
that can be evaluated repeatedly for units under study. Examples in the biomedical setting include prostate-
specific antigen (PSA) as a longitudinal biomarker associated with recurrence of prostate cancer, cholesterol
level, blood pressure, or ventricular hypertrophy as markers related to the occurence of heart attacks, and liver
enzyme measurements as markers for repeated hospitalization due to hepatitis. Including these longitudinal
markers in the modeling may improve the predictive ability of the model concerning event occurrences.
Alternatively, these markers may themselves be a focus of interest, and the data on the event occurrences
may enhance the modelling and understanding of the evolution of the longitudinal marker. Because the
marker is itself a genuine outcome variable, there is potential benefit in terms of predictive ability and ease
of interpretation to model the marker and recurrent event as jointly varying response variables. Such a
model was considered by Lin, Turnbull, McCulloch, and Slate (2002) in the single event setting.

Lin et al. (2002) postulated a latent class model wherein, conditionally on the latent class to which a unit
belongs, the longitudinal marker trajectories and the occurrence of the event are stochastically independent.
In effect, the association between the longitudinal marker process and the event process is entirely encoded
in the latent class to which the unit belongs. However, because the latent class membership is unobserved,
marginalization with respect to the possible latent classes yields the association between the marker and
the event occurrence. They demonstrated the viability of this latent class model in the single-event case
by applying it to a real data set with the longitudinal marker being the PSA level, and ascertained some
properties of the inferential aspects for the model through computer simulations.



We propose extending the work of Lin et al. (2002) to accommodate joint modelling of recurrent event
and longitudinal marker outcomes. In the analysis of inter-event times of recurrent events, it is important to
account for an informative stopping time and informative censoring that arise because of a sum-quota accrual
scheme: because the unit is typically observed over a random period, the frequency of event occurrence is
determined by the successive inter-event times, and the censoring time following the last observed event
depends upon the preceding inter-event times. Peña, Strawderman, and Hollander (2001) discussed the
impact of these issues for nonparametric estimation of the inter-event time distribution in a renewal model.

Peña and Hollander (2004) developed a very general model for recurrent events, which, in addition to
covariate effects, incorporated the effects of the past number of event occurrences, the impact of interventions
performed following event occurrences, and frailties. Inferential procedures were developed for this model
by Peña, Slate, and Gonzalez (2003).

In this paper, we build upon the appealing properties of the latent class model in Lin et al. (2002) by
incorporating the general recurrent event model of Peña and Hollander (2004) to arrive at a latent class model
for joint recurrent event and longitudinal marker outcomes. The model also takes into account other relevant
covariates, it models the possible weakening (or strengthening) effect of accumulating event occurrences, it
models the effect of interventions that are performed after each event occurrence through the effective time
that governs a baseline hazard, and finally also incorporates the effects of unobserved frailty variables. This
new class of models is described in Section 2. The remainder of the paper discusses some properties of
the models, presents estimation methods based on the EM algorithm (Dempster, Laird, and Rubin 1977),
evaluates these methods through simulation studies, and illustrates their application.

2 Proposed Class of Models

In this section, we introduce notation and describe the proposed class of models. We begin by considering
unit (or subject) i among n units. This unit will be under observation over the period [0, τi], where τi is a,
possibly random, termination time, which could be induced by an administrative constraint.

2.1 Latent Class Submodel

Following Lin, et al. (2002), it will be postulated that the subject belongs to one of K latent classes, where,
at this stage, K will be assumed known. This latent class membership will be represented by a K × 1
multinomial vector Ci = (Ci1, Ci2, . . . , CiK)T with the components defined via

Cik =

{

1 if ith unit is in kth latent class
0 otherwise

,

and the value of Ci unobserved. The probability that the unit belongs to the kth latent class will depend on
a subject-specific m×1 covariate vector Vi = (Vi1, Vi2, . . . , Vim)T and modelled according to a logit function.
Thus, with πik = Pr{Cik = 1|Vi}, it is postulated that

πik =
exp{VT

i ηk}
∑K

j=1 exp{V
T
i ηj}

, k = 1, 2, . . . ,K, (1)

with the identifiability restriction η1 = 0, and where ηk is an m× 1 vector of parameters for the kth class.

2.2 Conditional Longitudinal Marker Submodel

To model the longitudinal marker component, for this subject, we denote by {Yi(s), s ≥ 0} the longitudinal
marker of interest, and this marker will be observed on the (calendar) times si1 < si2 < . . . < simi

. We denote
by si = (si1, si2, . . . , simi

). For this unit, we will therefore have themi×1 vector of values of the marker given
by Yi = (Yi1, Yi2, . . . , Yimi

)T where Yij = Y (sij). At each calendar time at which the marker is observed,
the value of a time-dependent p×1 fixed covariate vector {Xi(s), s ≥ 0} will also be observed, so for this unit
there will be an mi × p matrix given by Xi = [Xi1,Xi2, . . . ,Xip], where Xij = (Xij1, Xij2, . . . , Xijmi

)T is



the vector of observed values of the jth covariate at the mi time points. Furthermore, covariates for random
effects and for class-specific effects are denoted respectively by the mi × q1 and mi × q2 matrices given by

Zi = [Zi1,Zi2, . . . ,Zi11
] and Wi = [Wi1,Wi2, . . . ,Wi11

],

where Zij = (Zij1, Zij2, . . . , Zijmi
)T and W = (Wij1,Wij2, . . . ,Wijmi

)T . Latent class-specific parameters
will be in the q2 × K matrix M = [µ1, µ2, . . . , µK ] with µk being a q2 × 1 vector containing parameters
specific to the kth latent class.

The stochastic model for the longitudinal marker, conditionally on the latent class membership vector
Ci, is specified by a linear mixed model given by

Yi = Xiβ + Zibi +Wi(MCi) + εi, (2)

where β is a p × 1 vector of regression parameters, bi is a q1 × 1 random vector which is multinormally
distributed with mean vector 0 and covariance matrix D, and the error component εi is an mi × 1 vector
with mean 0 and covariance matrix σ2Imi

, with Ia being an identity matrix of dimension a. Furthermore,
it is assumed that bi and εi are stochastically independent, and in addition, given the latent classes and
the random effects, the times {sij , j = 1, 2, . . . ,mi} at which the marker and the covariates are observed are
noninformative.

2.3 Conditional Recurrent Event Submodel

Next, we describe the conditional model for the recurrent event process. For the ith unit, we denote by
Si1 < Si2 < . . . the successive calendar times of event occurrences, and with Z+ = {0, 1, 2, . . .}, define
Ki = max{j ∈ Z+ : Sij ≤ τi} to be the number of event occurrences over the period of observation. With
Tij = Sij − Sij−1, j = 1, 2, . . . where Si0 = 0, the data available from monitoring the occurrence of the
recurrent event are

(Ki, τi, {Tij , j = 1, 2, . . . ,Ki}, τi − SiKi
),

where we note that τi−SiKi
is the right-censored value associated with TiKi+1. Aside from the above data,

we may also observe a possibly time-dependent q3× 1 covariate vector process {xi(s), s ∈ [0, τi]}, with some
of these components of this vector process possibly coinciding with some of the covariates observed when
monitoring the longitudinal marker or with covariates governing the class membership model (1).

Following Peña and Hollander (2004), stochastic process notation facilitates model and inferential devel-

opment. Towards this end, define the (calendar-time) counting process {N †i (s), s ≥ 0} and at-risk process

{R†i (s), s ≥ 0} according to

N†i (s) =

∞
∑

j=1

I{Sij ≤ s} and R†i (s) = I{τi ≥ s},

where I{A} is the indicator function of an event A. With these processes, we may then represent the
observable data according to

{(N †i (s), R
†
i (s),xi(s)), s ≥ 0}. (3)

Let {Fis, s ≥ 0} be the natural filtration generated by the data in (3); then R†i (s), s ≥ 0 and xi(s), s ≥
0 are predictable processes with respect to this filtration. To complete the submodel for the recurrent
event process, we introduce an observable predictable, nonnegative, piecewise differentiable, and piecewise
nondecreasing process {Ei(s), s ≥ 0}, referred to as the effective age process, and denote by ωi, i = 1, 2, . . . , n,
an unobservable frailty variable associated with the ith unit. The recurrent event model is then given by

Pr{dN †i (s) = 1|Fis−, Cik = 1, ωi} = ωiR
†
i (s)λ0k [Ei(s)] ρ

[

N†i (s−);αk

]

ψ
[

xT
i (s)γk

]

ds. (4)

In (4), λ0k(·), k = 1, 2, . . . ,K, are unknown baseline hazard functions associated with the latent classes,
ρ(·;α) is a nonnegative function of known form with ρk(0) = 1, while ψ(·) is a nonnegative link function of



known form, usually taken to be ψ(u) = exp(u). The frailty variable ωi will be assumed in this paper to
be gamma distributed with the same shape and scale parameters to make the model identifiable, that is,
ωi ∼ G(θ, θ) where G(a, b) is a gamma distribution with mean a/b and variance a/b2.

As motivated in Peña and Hollander (2004), the effective age process Ei(·) represents the effect of in-
terventions (“repairs” in the engineering and reliability context) after each event occurrence. One example
is perfect repair, Ei(s) = s − S

iN
†

i
(s−), for which, after an event occurrence, the effective age of the unit

governing the baseline hazard returns to zero. Another example is minimal repair, Ei(s) = s, where the unit
restarts at an age equal to the age just before the failure. Peña and Hollander (2004) provide other forms of
this effective age process and discuss how it accommodates the varied proposals in the literature.

The function ρ(·;α) in (4) encodes the effect of accumulating event occurrences on the unit. If an
increasing number of event occurrences leads to a weakening of the unit, such as an increasing number of
non-fatal heart attacks, then this function will be non-decreasing; whereas if more event occurrences lead
to improvements in the unit, such as the discovery of bugs in a computer software, then this will be a non-
increasing function. A simple form for this function could be ρ(j;α) = αj , j ∈ Z+. The ψ(·) function in (4)
represents the link between the event occurrences and relevant covariates.

2.4 Conditional Independence

The longitudinal marker and recurrent event process are joined through the assumption of conditional in-
dependence given the latent class membership. Additionally, the n units under study are assumed to be
independent.

Remainder of talk

By considering the latent class membership and frailty values as “missing data,” estimation methods follow
from the EM algorithm of Dempster, Laird, and Rubin (1977). These methods are developed for parametric
and nonparametric specification of the baseline hazard functions in (4), and the properties of the resulting
estimators are evaluated through simulation studies. The model is then illustrated by application to real
data.
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